Высокие статистические технологии

Форум сайта семьи Орловых

Текущее время: Вт май 18, 2021 7:21 pm

Часовой пояс: UTC + 3 часа




Начать новую тему Ответить на тему  [ Сообщений: 17 ] 
Автор Сообщение
 Заголовок сообщения: Аннотации новых статей А.И. Орлова
СообщениеДобавлено: Вс янв 24, 2021 11:43 pm 
В сети

Зарегистрирован: Вт сен 28, 2004 11:58 am
Сообщений: 9556
СТАТИСТИКА НЕЧИСЛОВЫХ ДАННЫХ - ЦЕНТРАЛЬНАЯ ЧАСТЬ СОВРЕМЕННОЙ ПРИКЛАДНОЙ СТАТИСТИКИ

А.И. Орлов

В 1979 г. статистика нечисловых данных была выделена как самостоятельная область прикладной статистики. Первоначально для обозначения этой области математических методов экономики использовался термин "статистика объектов нечисловой природы". Наш базовый учебник по статистике нечисловых данных называется "Нечисловая статистика". Статистика нечисловых данных - одна из четырех основных областей прикладной статистики (наряду со статистикой чисел, многомерным статистическим анализом, статистикой временных рядов и случайных процессов). Статистика нечисловых данных делится на статистику в пространствах общей природы и разделы, посвященные конкретным типам нечисловых данных (статистика интервальных данных, статистика нечетких множеств, статистика бинарных отношений и др.). В настоящее время статистика в пространствах общей природы - центральная часть прикладной статистики, а включающая ее статистика нечисловых данных - основная область прикладной статистики. Это утверждение подтверждается, в частности, анализом публикаций в разделе "Математические методы исследования" журнала "Заводская лаборатория. Диагностика материалов" - основном месте публикаций отечественных исследований по прикладной статистике. Настоящая статья посвящена анализу основных идей статистики нечисловых данных на фоне развития прикладной статистики с позиций новой парадигмы математических методов исследования. Описаны различные виды нечисловых данных. Проанализирован исторический путь статистической науки. Рассказано о развитии статистики нечисловых данных. Разобраны основные идеи статистики в пространствах общей природы: средние величины, законы больших чисел, экстремальные статистические задачи, непараметрические оценки плотности распределения вероятностей, методы классификации (диагностики и кластер-анализа), статистики интегрального типа. Кратко рассмотрены некоторые статистические методы анализа данных, лежащих в конкретных пространствах нечисловой природы: непараметрическая статистика (реальные распределения обычно существенно отличаются от нормальных), статистика нечетких множеств, теория экспертных оценок (медиана Кемени - это выборочное среднее экспертных упорядочений) и др. Обсуждаются некоторые нерешенные задачи статистики нечисловых данных.

1155. Орлов А.И. Статистика нечисловых данных - центральная часть современной прикладной статистики / А.И. Орлов // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. – Краснодар: КубГАУ, 2020. – №02(156). С. 111 – 142. – IDA [article ID]: 1562002007. – Режим доступа: http://ej.kubagro.ru/2020/02/pdf/07.pdf, 2 у.п.л.

DOI: http://dx.doi.org/10.21515/1990-4665-156-007


Вернуться наверх
 Профиль  
 
 Заголовок сообщения: Re: Аннотации новых статей А.И. Орлова
СообщениеДобавлено: Вс янв 31, 2021 11:24 am 
В сети

Зарегистрирован: Вт сен 28, 2004 11:58 am
Сообщений: 9556
Солидарная информационная экономика как основа новой парадигмы экономической науки

А.И.Орлов, Ю.Б. Сажин

Аристотель - основоположник экономической науки. В XVIII - XIX вв. наблюдаем рыночную экономику, пришедшую на смену теории Аристотеля. С развитием цифровой экономики в XXI в. идеи Аристотеля об управлении хозяйством с целью удовлетворения потребностей становятся все более актуальными. Проекты ОГАС В.М. Глушкова и "Киберсин" Ст. Бира - примеры разработок в духе Аристотеля. Солидарная информационная экономика, развивающая идеи Аристотеля, является основой новой парадигмы экономической науки.
Ключевые слова: Аристотель, экономическая теория, управление хозяйством, цифровая экономика, солидарная информационная экономика


1176. Орлов А.И., Сажин Ю.Б. Солидарная информационная экономика как основа новой парадигмы экономической науки // Инновации в менеджменте. 2020. №26. С. 52- 59.

https://www.elibrary.ru/item.asp?id=44533435


Вернуться наверх
 Профиль  
 
 Заголовок сообщения: Re: Аннотации новых статей А.И. Орлова
СообщениеДобавлено: Вс фев 07, 2021 10:16 am 
В сети

Зарегистрирован: Вт сен 28, 2004 11:58 am
Сообщений: 9556
Оценивание размерности вероятностно-статистической модели

Орлов А.И.

Вероятностно-статистические модели данных - основа методов прикладной статистики. При анализе статистически данных часто необходимо оценивать две составляющие вероятностно-статистических моделей - структуру моделей и их параметры. Методы расчета состоятельных оценок параметров хорошо известны (например, применяют методы одношаговых оценок, которые пришли на смену методам максимального правдоподобия). Структура модели обычно выбирается исследователем (можно сказать, что используются экспертные методы). Некоторые параметры структуры можно оценивать с помощью математико-статистических методов. Например, степень многочлена в регрессионной зависимости или число слагаемых в модели смеси распределений, используемой для классификации. Для подобных параметров модели используется общий термин - размерность вероятностно-статистической модели. Более общая составляющая модели - информативное подмножество признаков. В настоящей статье рассмотрено асимптотическое поведение оценок размерностей ряда моделей. Изучено асимптотическое поведение ряда оценок степени полинома при восстановлении зависимости. Получены состоятельные оценки размерности и структуры модели в регрессии. Рассмотрены подходы к оцениванию числа элементов смеси в задачах классификации. Обсуждаются оценки размерности модели в факторном анализе и многомерном шкалировании. С целью обоснования последовательного выполнения этапов статистического анализа данных анализируются проблемы "стыковки" алгоритмов классификации и регрессии. Полезными оказываются оптимизационные формулировки ряда задач прикладной статистики. Основные результаты касаются состоятельности оценок. Краткие формулировки ряда теорем содержатся в ранее вышедших публикациях. Проблема оценивания размерности вероятностно-статистической модели как самостоятельное направление прикладной статистики впервые рассмотрена здесь. Впервые публикуются доказательства включенных в настоящую статью теорем. Эти теоремы и подробные доказательства и являются основными научными результатами работы


1173. Орлов А.И. Оценивание размерности вероятностно-статистической модели // Научный журнал КубГАУ. 2020. №162. С. 1–36. http://ej.kubagro.ru/2020/08/pdf/02.pdf


Вернуться наверх
 Профиль  
 
 Заголовок сообщения: Re: Аннотации новых статей А.И. Орлова
СообщениеДобавлено: Чт фев 18, 2021 10:32 am 
В сети

Зарегистрирован: Вт сен 28, 2004 11:58 am
Сообщений: 9556
Миф мировой науки

Орлов А.И.

Как обосновано еще полвека назад [1] и подтверждено нашими исследованиями [2], основным наукометрическим показателем, по которому надо оценивать научную деятельность отдельного российского исследователя, научного коллектива (лаборатории, отдела, кафедры или организации), является число цитирований в РИНЦ (именно в РИНЦ, а не в западных базах данных!). Ориентация на зарубежные базы данных Скопус и WoS наносит вред интересам нашей страны [5], поскольку при этом игнорируется основная часть отечественной научной продукции, усилия исследователей направляются на достижение ложных целей (в частности, на подготовку статей на английском языке и пробивание их в англоязычные журналы, индексируемые в Скопус и WoS). Миф мировой науки соответствует представлению о России как о колонии англосаксов, в которой российская наука платит дань победителям, преподнося им свои научные результаты в виде, полностью подготовленном для бесплатного потребления англоязычными специалистами.

1160. Орлов А.И. Миф мировой науки / Большая Евразия: Развитие, безопасность, сотрудничество. Ежегодник. Вып. 3. Ч. 1. Материалы XIX Национальной научной конференции с международным участием «Модернизация России: приоритеты, проблемы, решения». Ч. 2 / РАН. ИНИОН. Отд. науч. сотрудничества; Отв. ред. В.И. Герасимов. – М., 2020. – С.687 - 689.
http://innclub.info/archives/11597, http://innclub.info/archives/16615
http://ukros.ru/archives/23180
http://inion.ru/site/assets/files/5226/ ... 20-3-1.pdf
https://www.academia.edu/42920625/


Вернуться наверх
 Профиль  
 
 Заголовок сообщения: Re: Аннотации новых статей А.И. Орлова
СообщениеДобавлено: Вс фев 21, 2021 8:40 am 
В сети

Зарегистрирован: Вт сен 28, 2004 11:58 am
Сообщений: 9556
1177. Орлов А.И. Инструменты контроллинга рисков // Контроллинг. 2020. №78. С. 56-62.
https://elibrary.ru/item.asp?id=44530384

УДК 338.3 : 519.2;
JEL: C00, A12

Орлов Александр Иванович,
д.э.н., д.т.н., к.ф.-м.н., профессор,
зав. лаб. экономико-математических методов в контроллинге,
МГТУ им. Н.Э. Баумана

Инструменты контроллинга рисков

Научная, практическая и учебная дисциплина "Контроллинг рисков" рассматривается в авторском семестровом курсе для магистрантов кафедры "Экономика и организация производства". В статье дана информация об инструментах контроллинга рисков, включенных в курс. Она начинается с обсуждения основных терминов "контроллинг" и "риск". Рассмотрены методы оценки рисков, прежде всего основанные на вероятностно-статистических моделях. Рассказано об основных составляющих математического аппарата контроллинга рисков, в частности, о математическом обеспечении контроллинга инновационных и инвестиционных рисков. Достойное место в курсе занимают глобальные экономические и экологические проблемы.


Вернуться наверх
 Профиль  
 
 Заголовок сообщения: Re: Аннотации новых статей А.И. Орлова
СообщениеДобавлено: Вс фев 28, 2021 8:53 am 
В сети

Зарегистрирован: Вт сен 28, 2004 11:58 am
Сообщений: 9556
1174. Орлов А.И. Естественные показатели различия // Научный журнал КубГАУ. 2020. №163. С. 248–264. http://ej.kubagro.ru/2020/09/pdf/20.pdf.

ЕСТЕСТВЕННЫЕ ПОКАЗАТЕЛИ РАЗЛИЧИЯ

Орлов Александр Иванович

У статистики нечисловых данных центральная область - статистика в пространствах общей природы (синоним - в пространствах произвольной природы). Для выборок нечисловых данных рассматриваются средние величины и законы больших чисел, статистики интегрального типа, непараметрические оценки плотности, задачи регрессионного и дискриминантного анализа и др. Основополагающие математические понятия - расстояния (метрики, псевдометрики), показатели различия (близости). Аксиоматическое введение расстояний в различных пространствах - популярная тематика на начальном этапе развития статистики нечисловых данных, ведущая начало с книги Кемени - Снелла, в которой аксиоматически введено расстояние между кластеризованными ранжировками. Поэтому целесообразно подробное рассмотрение способов введения метрик и показателей различия, а также изучение их свойств. Попытка выделить свойство, необходимое для получения интересующих нас результатов статистики нечисловых данных, привела нас к понятию "естественного показателя различия" ("естественной меры близости"). Пространства с естественными мерами близости имеют свойства, во многом аналогичные свойствам метрических пространств. В статье приведен ряд соответствующих теорем. Впервые ввёл понятие метрического пространства ввёл Морис Фреше в 1906 г. в связи с рассмотрением функциональных пространств. Неравенство треугольника было унаследовано от евклидовой геометрии. По нашему мнению, нет необходимости в обязательном порядке принимать справедливость неравенства треугольника как аксиому. Другими словами, в различных математических областях целесообразно перейти от метрик (расстояний) к естественным показателям различия. Это в соответствии с новой парадигмой математических методов исследования позволит упростить рассуждения и получать выводы в естественной общности. Актуальным является переход от метрик (расстояний) к естественным показателям различия в различных математических областях. Его можно сопоставить с переходом от классической математики к системной нечетной интервальной математике. Эти два перехода обеспечат новый рассвет математики в XXI столетии.


Вернуться наверх
 Профиль  
 
 Заголовок сообщения: Re: Аннотации новых статей А.И. Орлова
СообщениеДобавлено: Вс мар 07, 2021 10:43 am 
В сети

Зарегистрирован: Вт сен 28, 2004 11:58 am
Сообщений: 9556
1175. Орлов А.И. Формализация логики правдоподобных рассуждений на основе теории измерений // Научный журнал КубГАУ. 2020. №164. С. 304–317. http://ej.kubagro.ru/2020/10/pdf/25.pdf.


ФОРМАЛИЗАЦИЯ ЛОГИКИ ПРАВДОПОДОБНЫХ РАССУЖДЕНИЙ НА ОСНОВЕ ТЕОРИИ ИЗМЕРЕНИЙ

Орлов Александр Иванович

Логические конструкции - теоретическая база построения и изучения математических моделей социально-экономических явлений и процессов, разработки методов управления в организационных системах. При этом про многие утверждения относительно явлений и процессов в реальном мире (в отличие от формальных систем) нельзя сказать, что они истинны или ложны, можно говорить лишь о той или иной степени правдоподобности. Следовательно, необходима разработка логики правдоподобных утверждений. В настоящей статьи развиваем подход Д. Пойа, принципиально отличающейся как от вероятностной логики, так и от нечеткой логики. Цель настоящей статьи - наметить один из возможных подходов к формализации теории правдоподобностей Д. Пойа. Подход идейно связан с теорией измерений, а не с теорией вероятностей, как предлагал Д. Пойа. Намеченная здесь теория может найти применения в принятии решений, управлении научными исследованиями, экспертных оценках, а также в модальной логике. Настоящая статья - первый шаг к построению математической логики правдоподобных рассуждений на основе эмпирических наблюдений Д. Пойа. Предлагаем исходить не из вероятностной или нечеткой логики, а из порядковой логики на основе теории измерений. Очевидно, необходимо дальнейшее развитие развиваемого нами подхода. В частности, следует проанализировать различные схемы анализа и обработки правдоподобных утверждений. Уже на нынешней стадии развития подход к формализации логики правдоподобных рассуждений Д. Пойа на основе теории измерений способен дать полезные практические рекомендации. Они могут быть использованы при математическом моделировании социально-экономических явлений и процессов.


Вернуться наверх
 Профиль  
 
 Заголовок сообщения: Re: Аннотации новых статей А.И. Орлова
СообщениеДобавлено: Вс мар 14, 2021 7:23 am 
В сети

Зарегистрирован: Вт сен 28, 2004 11:58 am
Сообщений: 9556
1165. Орлов А.И. Вероятностно-статистические модели корреляции и регрессии / Научный журнал КубГАУ. 2020. №160. С. 130–162.
http://ej.kubagro.ru/2020/06/pdf/11.pdf, 2,062 у.п.л.


ВЕРОЯТНОСТНО-СТАТИСТИЧЕСКИЕ МОДЕЛИ КОРРЕЛЯЦИИ И РЕГРЕССИИ

Орлов Александр Иванович

Коэффициенты корреляции и детерминации широко используются при статистическом анализе данных. Согласно теории измерений линейный парный коэффициент корреляции Пирсона применим к переменным, измеренным в шкале интервалов. Его нельзя использовать при анализе порядковых данных. Непараметрические ранговые коэффициенты Спирмена и Кендалла оценивают связь порядковых переменных. Критическое значение при проверке значимости отличия коэффициента корреляции от 0 зависит от объема выборки. Поэтому использование "шкалы Чеддока" некорректно. При применении пассивного эксперимента коэффициенты корреляции обоснованно использовать для прогнозирования, но не для управления. Для получения предназначенных для управления вероятностно-статистических моделей необходим активный эксперимент. Влияние выбросов на коэффициент корреляции Пирсона весьма велико. При увеличении числа проанализированных наборов предикторов заметно растет максимальный из соответствующих коэффициентов корреляции - показателей качества приближения (эффект «вздувания» коэффициента корреляции). Рассмотрены четыре основные модели регрессионного анализа. Выделены модели метода наименьших квадратов с детерминированной независимой переменной. Распределение отклонений произвольно, однако для получения предельных распределений оценок параметров и регрессионной зависимости предполагаем выполнение условий центральной предельной теоремы. Второй тип моделей основан на выборке случайных векторов. Зависимость является непараметрической, распределение двумерного вектора - произвольным. Об оценке дисперсии независимой переменной можно говорить только в модели на основе выборки случайных векторов, равно как и о коэффициенте детерминации как критерии качества модели. Обсуждается сглаживание временных рядов. Рассмотрены методы восстановления зависимостей в пространствах общей природы. Показано, что предельное распределение естественной оценки размерности модели является геометрическим, а построение информативного подмножества признаков наталкивается на эффект "вздувания коэффициентов корреляции". Обсуждаются различные подходы к регрессионному анализ интервальных данных. Анализ многообразия моделей регрессионного анализа приводит к выводу, что не существует единой "стандартной модели".


Вернуться наверх
 Профиль  
 
 Заголовок сообщения: Re: Аннотации новых статей А.И. Орлова
СообщениеДобавлено: Сб мар 20, 2021 7:42 am 
В сети

Зарегистрирован: Вт сен 28, 2004 11:58 am
Сообщений: 9556
1169. Орлов А.И. Свойства общей схемы устойчивости / Научный журнал КубГАУ. 2020. № 161. С. 121 – 149. http://ej.kubagro.ru/2020/07/pdf/10.pdf.

СВОЙСТВА ОБЩЕЙ СХЕМЫ УСТОЙЧИВОСТИ

Орлов Александр Иванович

Математические модели могут давать лишь приближенное представление о реальных явлениях и процессах. Исходные данные известны лишь с некоторой точностью, математические зависимости всегда несколько отличаются от реальных. Поэтому изучение устойчивости выводов относительно допустимых отклонений исходных данных и предпосылок модели – один из этапов построения математической модели, предназначенной для практического использования. Нами разработан подход к изучению устойчивости выводов в математических моделях. Центральное место в нем занимает новый математический объект - общая схема устойчивости. Основное содержание настоящей статьи - изучение математических свойств общей схемы устойчивости. Так называется кортеж из пяти элементов {A, B, f, d, E}, где A –пространство исходных данных; B – пространство решений; f – способ получения выводов, т.е. однозначное отображение из A в B; неотрицательная функция d, определенная на подмножествах множества B, используется для определения показателей устойчивости; E - совокупность допустимых отклонений, т.е. система подмножеств множества A такая, что каждому элементу множества исходных данных и каждому значению параметра из некоторого множества параметров соответствует подмножество множества исходных данных (оно называется множеством допустимых отклонений в точке при определенном значении параметра). Способ получения выводов иногда для краткости называем моделью. Во многих конкретных постановках устойчивости выводы получают с помощью определенного метода, основанного на некоторой модели. С прикладной точки зрения модель первична, метод – вторичен, поскольку результаты его применения определяются свойствами модели. Введена система показателей устойчивости выводов, получаемых с помощью математических моделей. Они определяются с помощью метрики, псевдометрики или показателя различия (меры близости) как диаметр множества. В серии из 7 теорем показано, что оптимизационные задачи, соответствующие различным показателям устойчивости, имеют решения, т.е. точные верхние грани достигаются при определенных значениях аргументов. Рассмотрен ряд иных свойств общей схемы устойчивости.


Вернуться наверх
 Профиль  
 
 Заголовок сообщения: Re: Аннотации новых статей А.И. Орлова
СообщениеДобавлено: Вс мар 28, 2021 8:50 am 
В сети

Зарегистрирован: Вт сен 28, 2004 11:58 am
Сообщений: 9556
1179. Орлов А.И. Статистические и экспертные методы в задачах экономики и управления наукой // Научный журнал КубГАУ. 2021. №166. С. 1–35.
http://ej.kubagro.ru/2021/02/pdf/01.pdf, 2,188 у.п.л.


СТАТИСТИЧЕСКИЕ И ЭКСПЕРТНЫЕ МЕТОДЫ В ЗАДАЧАХ ЭКОНОМИКИ И УПРАВЛЕНИЯ НАУКОЙ

Орлов Александр Иванович

В настоящее время в науке и научном обслуживании работают миллионы людей. Проблемы управления научной деятельностью актуальны как для исследователей, так и для администраторов различных уровней. Для их рационального решения используют наукометрию (буквальный смысл - измерения в науке) — область знания, занимающуюся изучением науки путем статистических и экспертных исследований структуры и динамики научной деятельности. Наукометрия как часть науковедения служит основой для принятия управленческих решений в области управления научной деятельностью. В настоящей статье предлагаем для решения проблем управления научной деятельностью использовать комплекс передовых управленческих технологий - контроллинг, т.е. систему информационно-аналитической поддержки процесса принятия управленческих решений в организации. Как известно, оценка продуктивности и результативности научной деятельности проводится повсеместно в вузах и научных организациях. В статье приведен перечень основных положений разрабатываемой нами новой области контроллинга - контроллинга научной деятельности. Установлено, что ключевой (т.е. основной) показатель результативности научной деятельности исследователей, подразделений, научных организаций - число цитирований их работ в научных публикациях. Проанализированы распространенные заблуждения, связанные со статистической оценкой эффективности научной деятельности. Они приводят к необоснованным управленческим решениям, наносящим вред развитию научных исследований. Например, отдельные лица необоснованно считают публикации в научных журналах основным видом научных публикаций; верят в реальное существование «мировой науки»; отдают приоритет публикациям в зарубежных журналах, индексируемых в базах библиометрических данных WoS и Scopus; основным наукометрическим показателем без каких-либо обоснований считают индекс Хирша; отрицательно относятся к самоцитированию; игнорируют публикации старше 5 лет, в частности, при расчете импакт-факторов журналов, и т. д. Дан критический анализ экспертных методов наукометрии. Рассмотрены четыре вида таких методов: рецензирование статей, работа диссертационных советов, назначения (выборы) на административные должности, выборы в РАН.


Вернуться наверх
 Профиль  
 
 Заголовок сообщения: Re: Аннотации новых статей А.И. Орлова
СообщениеДобавлено: Вс апр 04, 2021 3:40 pm 
В сети

Зарегистрирован: Вт сен 28, 2004 11:58 am
Сообщений: 9556
1151. Орлов А.И. Существование асимптотически оптимальных планов в дискретных задачах динамического программирования / Научный журнал КубГАУ. 2020. №155. С. 147–163.
http://ej.kubagro.ru/2020/01/pdf/12.pdf
http://dx.doi.org/10.21515/1990-4665-155-012
https://www.elibrary.ru/download/elibra ... 533700.pdf


СУЩЕСТВОВАНИЕ АСИМПТОТИЧЕСКИ ОПТИМАЛЬНЫХ ПЛАНОВ В ДИСКРЕТНЫХ ЗАДАЧАХ ДИНАМИЧЕСКОГО ПРОГРАММИРОВАНИЯ

Орлов Александр Иванович

Динамическое программирование предназначено для решения дискретных задач оптимального управления. Согласно этому методу оптимальное решение в многомерной задаче находят путем ее декомпозиции на этапы, каждый из которых представляет подзадачу относительно одной переменной. В экономических задачах число этапов - это горизонт планирования. Выбор горизонта планирования необходим для строгой постановки прикладной задачи в области экономики и управления, но его зачастую трудно обосновать. Мы видим выход в использовании асимптотически оптимальных планов, для которых значения критерия оптимизации мало отличается от его значений для оптимальных планов при всех достаточно больших горизонтах планирования. Основной результат статьи - существование асимптотически оптимального плана. Доказательство проводится в нескольких постановках. В случае стремления к 0 хвоста суммы максимумов переходных функций существование асимптотически оптимального плана получено в теореме 1. Частным случаем являются модели с дисконтированием при коэффициенте дисконтирования, меньшем 1. Основная часть статьи посвящена моделям с коэффициентом дисконтирования, равном 1. Теорема 2 о магистрали доказана для базового множества из конечного числа элементов. В теореме 3 получено утверждение об аппроксимации произвольного множества конечным. В заключительной теореме 4 существование асимптотически оптимального плана доказано в общем случае. Термин "магистраль" ассоциируется с известной рекомендацией водителям: чтобы попасть из пункта А в пункт Б, целесообразно на начальном участке пути выехать на магистраль, двигаться по ней, а на заключительном участке съехать с магистрали и добраться до пункта Б. Аналогична рекомендация по выбору оптимальной траектории при использовании принципа максимума Понтрягина в модели оптимального распределения времени между получением знаний и развитием умений. Этот факт подчеркивает методологическую близость динамического программирования и принципа максимума Понтрягина.


Вернуться наверх
 Профиль  
 
 Заголовок сообщения: Re: Аннотации новых статей А.И. Орлова
СообщениеДобавлено: Вс апр 11, 2021 8:37 am 
В сети

Зарегистрирован: Вт сен 28, 2004 11:58 am
Сообщений: 9556
1181. Орлов А.И. О развитии теории принятия решений и экспертных оценок // Научный журнал КубГАУ. 2021. № 167. С. 177–198.
http://ej.kubagro.ru/2021/03/pdf/12.pdf, 1,375 у.п.л.


О РАЗВИТИИ ТЕОРИИ ПРИНЯТИЯ РЕШЕНИЙ И ЭКСПЕРТНЫХ ОЦЕНОК

Орлов Александр Иванович

В статье обсуждаются основные понятия и термины, применяемые в научной, прикладной и учебной дисциплине, посвященной принятию решений, в том числе на основе использования экспертных оценок. Теорию принятия решений можно отнести к кибернетике и исследованию операций, а также к экономико-математическим моделям и методам, к организационно-экономическому моделированию. Дан обзор содержания основных широко цитируемых в научных исследованиях работ автора по теории принятия решений. Эти монографии можно использовать также и как учебники. Согласно общей идее: "Образование через науку" научные монографии целесообразно готовить так, чтобы их можно было использовать как учебники. Таким образом можно и нужно выводить обучающихся на передний край современных научных исследований. Дана информация о научных исследованиях автора по теории принятия решений. Экспертные оценки – та часть теории принятия решений, которой автор занимается постоянно – с начала 70-х и до сих пор. Приведена краткая информация об основных публикациях и некоторых работах последних лет. В частности, рассказано о роли экспертных оценок в разработке автоматизированной системы прогнозирования и предотвращения авиационных происшествий и конструировании аддитивно-мультипликативных моделей оценки рисков проектов в ракетно-космической отрасли. Экспертные оценки можно рассматривать как "прикладное зеркало" статистики нечисловых данных. Именно такая формулировка используется в новой парадигме математических методов исследования. Можно констатировать, что теория принятия решений и статистика нечисловых данных являются стержнем развития математических методов экономики и математики в целом с 1970-х годов, в настоящее время и далее в текущем XXI веке.


Вернуться наверх
 Профиль  
 
 Заголовок сообщения: Re: Аннотации новых статей А.И. Орлова
СообщениеДобавлено: Вт апр 20, 2021 10:05 am 
В сети

Зарегистрирован: Вт сен 28, 2004 11:58 am
Сообщений: 9556
1163. Орлов А.И. Основные требования к методам анализа данных (на примере задач классификации) / Научный журнал КубГАУ. 2020. №159. С. 239–267. http://ej.kubagro.ru/2020/05/pdf/17.pdf.

ОСНОВНЫЕ ТРЕБОВАНИЯ К МЕТОДАМ АНАЛИЗА ДАННЫХ (НА ПРИМЕРЕ ЗАДАЧ КЛАССИФИКАЦИИ)

Орлов Александр Иванович


Назрела необходимость навести порядок в методах классификации. Это повысит их роль в решении прикладных задач, в частности, при диагностике материалов. Для этого прежде всего следует выработать требования, которым должны удовлетворять методы классификации. Первоначальная формулировка таких требований - основное содержание настоящей работы. Математические методы классификации рассматриваются как часть методов прикладной статистики. Обсуждаются естественные требования к рассматриваемым методам анализа данных и представлению результатов расчетов, вытекающие из накопленных отечественной вероятностно-статистической научной школой достижений и идей. Даются конкретные рекомендации по ряду вопросов, а также критика отдельных ошибок. В частности, методы анализа данных должны быть инвариантны относительно допустимых преобразований шкал, в которых измерены данные, т.е. методы должны быть адекватны в смысле теории измерений. Основой конкретного статистического метода анализа данных всегда является та или иная вероятностная модель. Она должна быть явно описана, ее предпосылки обоснованы - либо из теоретических соображений, либо экспериментально. Методы обработки данных, предназначенные для использования в реальных задачах, должны быть исследованы на устойчивость относительно допустимых отклонений исходных данных и предпосылок модели. Должна указываться точность решений, даваемых с помощью используемого метода. При публикации результатов статистического анализа реальных данных необходимо указывать их точность (доверительные интервалы). В качестве оценки прогностической силы алгоритма классификации вместо доли правильных прогнозов рекомендуется использовать прогностическую силу. Математические методы исследования делятся на "разведочный анализ" и "доказательную статистику". Специфические требования к методам обработки данных возникают в связи с их "стыковкой" при последовательном выполнении. Обсуждаются границы применимости вероятностно-статистических методов. Рассматриваются также конкретные постановки задач классификации и типовые ошибки при применении различных методов их решения.


Вернуться наверх
 Профиль  
 
 Заголовок сообщения: Re: Аннотации новых статей А.И. Орлова
СообщениеДобавлено: Сб апр 24, 2021 10:54 pm 
В сети

Зарегистрирован: Вт сен 28, 2004 11:58 am
Сообщений: 9556
1161. Орлов А.И. Метод ценообразования на основе оценивания функции спроса / Научный журнал КубГАУ. 2020. №158. С. 250 – 267.
http://ej.kubagro.ru/2020/04/pdf/18.pdf


МЕТОД ЦЕНООБРАЗОВАНИЯ НА ОСНОВЕ ОЦЕНИВАНИЯ ФУНКЦИИ СПРОСА

Орлов Александр Иванович

При решении некоторых задач экономики и управ-ления на предприятии возникает необходимость определения розничной цены товара или услуги при известной оптовой цене или цене производи-теля. Предлагаем определять розничную цену на основе анализа данных опроса потенциальных потребителей о максимально возможной для них цене на рассматриваемый товар или услугу. Роз-ничную цену рассчитываем на основе оптимизации экономического эффекта, равного произведению результата от продажи одной единицы товара на функцию спроса, которую оцениваем путем опроса потребителей. Для решения оптимизационной задачи функцию спроса приближаем с помощью метода наименьших квадратов. Как примеры проанализированы линейная и степенная модели функции спроса. Обсуждаются пути дальнейшего развития предложенного подхода. Сформулирова-ны нерешенные научные задачи. Требуют даль-нейшей проработки методы оценивания функции спроса в условиях большого количества повторов в ответах респондентов и их склонности к "круглым цифрам", вследствие чего нельзя пользоваться критерием Колмогорова для определения точности восстановления функции спроса. Различные параметрические и непараметрические подходы регрессионного анализа должны быть адаптированы к рассматриваемой задаче восстановления зависимости спроса от цены, равно как и методы решения соответствующих оптимизационных задач.


Вернуться наверх
 Профиль  
 
 Заголовок сообщения: Re: Аннотации новых статей А.И. Орлова
СообщениеДобавлено: Вс май 02, 2021 10:44 am 
В сети

Зарегистрирован: Вт сен 28, 2004 11:58 am
Сообщений: 9556
1159. Орлов А.И. Система моделей и методов проверки однородности двух независимых выборок / Научный журнал КубГАУ. 2020. №157. С. 145 – 169. http://ej.kubagro.ru/2020/03/pdf/12.pdf.

СИСТЕМА МОДЕЛЕЙ И МЕТОДОВ ПРОВЕРКИ ОДНОРОДНОСТИ ДВУХ НЕЗАВИСИМЫХ ВЫБОРОК

Орлов Александр Иванович

Новая парадигма математических методов исследования позволяет дать системный анализ различных постановок задач анализа статистических данных и методов их решения, основанных на принятой исследователем той или иной вероятностно-статистической модели порождения данных. Методы проверки однородности двух независимых выборок - классическая область математической статистики. За более чем 111 лет с момента публикации основополагающей статьи Стьюдента разработаны критерии проверки статистической гипотезы однородности в различных постановках, изучены их свойства. Однако актуальна потребность в упорядочении совокупности найденных научных результатов. Необходим анализ всего многообразия постановок задач проверки статистических гипотез однородности двух независимых выборок, а также соответствующих статистических критериев. Такому анализу посвящена настоящая статья. Дана сводка основных результатов, касающихся методов проверки однородности двух независимых выборок, и проведено их сравнительное изучение, позволяющие системно анализировать многообразие таких методов с целью выбора наиболее адекватного для обработки конкретных данных. На основе базовой вероятностно-статистической модели сформулированы основные постановки задачи проверки однородности двух независимых выборок. Дан сравнительный анализ критериев Стьюдента и Крамера - Уэлча, предназначенных для проверки однородности математических ожиданий, обоснована рекомендация по широкому применению критерия Крамера - Уэлча. Из непараметрические методов проверки однородности рассмотрены критерии Вилкоксона, Смирнова, Лемана - Розенблатта. Разобраны два мифа о критерии Вилкоксона. На основе анализа публикаций основоположников показана некорректность термина "критерий Колмогорова - Смирнова". Для проверки абсолютной однородности, т.е. совпадения функций распределения выборок, рекомендовано использовать критерий Лемана - Розенблатта. Обсуждаются актуальные проблемы разработки и применения непараметрических критериев, в том числе различие номинальных и реальных уровней значимости, затрудняющее сравнение критериев по мощности, и необходимость учета совпадений выборочных значений (с точки зрения классической теории математической статистики вероятность совпадений равна 0).


Вернуться наверх
 Профиль  
 
 Заголовок сообщения: Re: Аннотации новых статей А.И. Орлова
СообщениеДобавлено: Вс май 09, 2021 11:00 am 
В сети

Зарегистрирован: Вт сен 28, 2004 11:58 am
Сообщений: 9556
1146. Орлов А.И. Применение метода Монте-Карло при изучении свойств статистических критериев однородности двух независимых выборок / А.И. Орлов // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. – Краснодар: КубГАУ, 2019. – №10(154). С. 55 – 83. – IDA [article ID]: 1541910007. – Режим доступа: http://ej.kubagro.ru/2019/10/pdf/07.pdf, 1,812 у.п.л.

ПРИМЕНЕНИЕ МЕТОДА МОНТЕ-КАРЛО ПРИ ИЗУЧЕНИИ СВОЙСТВ СТАТИСТИЧЕСКИХ КРИТЕРИЕВ ОДНОРОДНОСТИ ДВУХ НЕЗАВИСИМЫХ ВЫБОРОК

Орлов Александр Иванович

К инструментальным методам экономики относится метод Монте-Карло (метод статистических испытаний). Он широко используется при разработке, изучении и применении математических методов исследования в эконометрике, прикладной статистике, организационно-экономическом моделировании, при разработке и принятии управленческих решений, является основой имитационного моделирования. Разработанная нами новая парадигма математических методов исследования опирается на применение метода Монте-Карло. В математической статистике для многих метолов анализа данных получены предельные теоремы об асимптотическом поведении рассматриваемых величин при безграничном росте объемов выборок. Следующий шаг - изучение свойств этих величин при конечных объемах выборок. Для такого изучения применяют метод Монте-Карло. В настоящей статье этот метод применяем для изучения свойств статистических критериев проверки однородности двух независимых выборок. Рассмотрены наиболее используемые при анализе реальных данных критерии - Крамера-Уэлча, совпадающий при равенстве объемов выборок с критерием Стьюдента; Лорда, Вилкоксона (Манна-Уитни), Вольфовица, Ван-дер-Вардена, Смирнова, типа омега-квадрат (Лемана-Розенблатта). Метод Монте-Карло позволяет оценить скорости сходимости распределений статистик критериев к пределам, сравнить свойства критериев при конечных объемах выборок. Для применения метода Монте-Карло необходимо выбрать функции распределения элементов двух выборок. Для этого использованы нормальные распределения и распределения Вейбулла - Гнеденко. Получена рекомендация: для проверки гипотезы совпадения функций распределения двух выборок целесообразно использовать критерий Лемана - Розенблатта типа омега-квадрат. Если есть основания предполагать, что распределения отличаются в основном сдвигом, то можно использовать также критерии Вилкоксона и Ван-дер-Вардена. Однако даже в этом случае критерий типа омега-квадрат может оказаться более мощным. В общем случае, кроме критерия Лемана - Розенблатта, допустимо применение критерия Смирнова, хотя для этого критерия реальный уровень значимости может значительно отличаться от номинального. Оценены частоты расхождений статистических выводов по разным критериям.


Вернуться наверх
 Профиль  
 
 Заголовок сообщения: Re: Аннотации новых статей А.И. Орлова
СообщениеДобавлено: Сб май 15, 2021 8:27 pm 
В сети

Зарегистрирован: Вт сен 28, 2004 11:58 am
Сообщений: 9556
1184. Орлов А.И. Развивающая идеи Аристотеля солидарная информационная экономика – основа новой парадигмы экономической науки // Biocosmology – neo-Aristotelism. 2020. Vol. 10. № 3-4. С. 406-420.
https://biocosmology.org/wp-content/upl ... 0Nos34.pdf

Развивающая идеи Аристотеля солидарная информационная экономика – основа новой парадигмы экономической науки

Александр Иванович Орлов


Резюме. Аристотель – общепризнанный основоположник экономической науки. В XVIII–XIX вв. на смену теории Аристотеля пришла рыночная экономика, в ХХ в. сменившаяся смешанной экономикой. С взрывным развитием цифровой экономики в XXI в. идеи Аристотеля об управлении хозяйством с целью удовлетворения потребностей становятся все более актуальными. Выполненные в ХХ в. проекты ОГАС В.М. Глушкова и Киберсин Ст. Бира являются примерами разработок в духе Аристотеля. Солидарная информационная экономика XXI в., развивающая идеи Аристотеля, является основой новой парадигмы экономической науки. Следует вывести рыночную экономику из употребления в науке и преподавании, и заменить ее в качестве базовой экономической теории на солидарную информационную экономику. Настоятельно необходима смена парадигмы экономической науки, ее основой должна являться солидарная информационная экономика, развивающая идеи Аристотеля.
Ключевые слова: экономическая наука, парадигма, Аристотель, информационно-экономические технологии, управление, солидарная информационная экономика, планирование, цифровая экономика.

Реферат

Как следствие развертывания цифровой экономики назрела необходимость смены парадигмы экономической теории. Взамен концепций рыночной экономики и свободного предпринимательства предлагаем в качестве основы новой парадигмы разрабатываемую нами солидарную информационную экономику.
Согласно определению основоположника экономической науки Аристотеля, экономика – это хозяйственная деятельность, направленная на удовлетворение естественных потребностей людей. Вслед за Аристотелем полагаем, что экономика – это наука о том, как управлять хозяйством. Цель хозяйственной деятельности – удовлетворение потребностей, а не получение прибыли. Цифровизация – четвёртая промышленная революция. Количество инноваций в области применения информационно-коммуникационных технологий в экономике и управлении перешло в качество.
Общество потребления уходит в прошлое. В последние годы мировое сообщество стало больше обращать внимание на то, что заимствование намного экономнее и удобнее обычной покупки. Финансовый кризис 2008 года стал своеобразным катализатором изменений в мировой экономике, появился абсолютно новый феномен – sharing economy, т.е. «совместное владение», в основе которого лежат не привычные нам отношения «купи-продай», а аренда. Sharing economy опирается на цифровые технологии.
Мощности компьютеров к концу ХХ в. достигли такого уровня развития, что стало возможным провести расчеты, во-первых, для всех производимых товаров и услуг, во-вторых, для всего Земного шара. Т.е. появилась возможность планирования производства всех возможных товаров и услуг в масштабе всего Земного шара. Предложена шестишаговая схема применения солидарной информационной экономики для повышения эффективности процессов управления в крупномасштабной экономической системе (пример – ракетно-космическая отрасль). Организационно-экономическое, математическое и программное обеспечение контроллинга, инноваций и менеджмента рассмотрены в наших монографиях и статьях в свете идей солидарной информационной экономики.
Рыночная экономика устарела и стала тормозом как в развитии экономической теории, так и при решении практических задач. Отрицание рыночной экономики – это отрицание отрицания экономики Аристотеля.
Ветер с Востока одолевает ветер с Запада, как говорил Председатель Мао Цзэдун. По валовому внутреннему продукту (рассчитанному на основе паритета покупательной способности) Китайская Народная Республика с 2014 г. находится на первом месте в мире, демонстрируя значение планового начала и солидарной информационной экономики в целом в развитии экономики. Следует привести в соответствии с новой реальностью ориентиры теоретических построений (т.е. парадигму экономической науки).
Необходимо вывести рыночную экономику из употребления в науке и преподавании и заменить ее в качестве базовой экономической теории на солидарную информационную экономику. Короче, необходима смена парадигмы экономической науки. Основой новой парадигмы является солидарная информационная экономика, развивающая идеи Аристотеля.


Вернуться наверх
 Профиль  
 
Показать сообщения за:  Сортировать по:  
Начать новую тему Ответить на тему  [ Сообщений: 17 ] 

Часовой пояс: UTC + 3 часа


Кто сейчас на форуме

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 3


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  
cron
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group
Русская поддержка phpBB